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Abstract—Analysing and modelling traffic is one important
step in the performance evaluation of communication systems.
In this paper we focus on first responder (FR) networks. The
goal is to figure out models that can be used to generate realistic
synthetic push to talk voice traffic for single talk groups to be
used in network simulation. Our work is based on an empirical
long-time measurement of one FR channel. The analysis of
the trace shows significant short- and long-range correlations
as well as variations of load over time. As the characteristics
analysed are similar to ones observed in disaster area (DA) traces,
we consider n-state and 3-state (Semi)-Markov models. After
fitting the parameters of these models to the traces, synthetic
traffic streams for the different models are generated and finally
evaluated by both visual and statistical analysis.

I. INTRODUCTION

In the last decade, there has been a lot research in the area

of ad hoc and mesh networks. These networks can overcome

failure of single components by their very definition. Thus,

ad hoc and mesh networks are seen as reliable solutions

for public safety wireless communication systems. Simulative

performance evaluation is used during the development of

algorithms and protocols for these networks. However, for

these simulations realistic traffic modelling is required. In this

paper we focus on traffic modelling for first responder (FR)

communication systems, i.e. communication systems used by

paramedics and fire fighters during their daily work.

Even though we find slowly upcoming data services, the

main application today still is voice communication: different

users communicate via push to talk voice calls. Each call is

initiated by one sender that starts speaking and stops after a

certain amount of time. There is only a half-duplex connection

(unlike a telephone call): while one user speaks, the others

have to listen. Different calls with semantic connection (e.g.

question and answer) may be regarded as one conversation or

session. In that sense a conversation consists of an arbitrary

number of calls between two callers, and typically, the callers

alternate in calling each other. The users that communi-

cate with each other share one broadcast voice communica-

tion channel. Technically this broadcast voice communication

channel may be realized e.g. as a separated physical channel

or as a multicast group. The term talk group abstracts from

the technical realization.

In this paper, we analyse and model the push to talk

traffic typical for FR systems. The kind of traffic in FR

communication systems is similar to the push to talk voice

traffic in catastrophe or disaster area (DA) scenarios. Thus, one

goal in this paper is to evaluate whether models we developed

for DA scenarios can be adapted for FR scenarios. We base

our analysis on real traces obtained on the main FR channel

of Bonn (Germany) in 2006.

The remaining part of this paper is structured as follows:

Section II describes related work. In section III we describe

our previous work, in particular the models developed for DA

scenarios. Section IV describes the specific area in which the

trace was acquired, the measurement architecture, as well as

the generation of time series. Next, the time series are analysed

with respect to short and long term dependencies and heavy

load periods (section V). In this context, we also point out the

differences between FR and DA traffic. Section VI deals with

the fitting of the parameters of the different traffic models

to our traces. After that, we study the traffic generated by

different models to analyse their impact (section VII). Finally,

we conclude the paper and point out topics for future work

(section VIII).

II. RELATED WORK

Paul T. Brady analysed telephone voice conversations in

the 1960s and discovered that on and off periods of voice are

exponentially distributed ([1], [2]). Based on his work [2], the

ITU-T standardised (ITU-T P.59 - 1993) a commonly accepted

model for artificial conversational speech [3] where a voice

channel is modelled by a two-state markov model (cf. figure

1) assuming one state as talk spurt (ON-state) and the other as

silence (OFF-state). In analogy to Brady’s analysis the holding

times in ON- and OFF-state are exponentially distributed.

The analysis of group communication in land mobile radio

systems began in the 1980s. The purpose was to derive models

to be used in the design of the new trunked radio systems.

The analyses of Hess ([4], [5]) characterise session length and

Fig. 1. 2-state (On-/Off-Model) (semi-)markov model
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interarrival times as exponentially distributed (similar to Brady

cf. figure 1) and suggest models for peak load. He finally

recommends to use the Erlang-C model. His results were

confirmed by the Public Safety Advisory Committee [6]. Other

studies (e.g. [7]) examine the behaviour of different talk groups

to the system and suggest more complex models. However, the

traffic is still modelled with exponentially distributed session

length and interarrival times.

Later studies ([8], [9], [10], [11]) show that modelling the

channel holding and idle times as exponentially distributed

is inaccurate. For channel holding times lognormal and for

inter arrival time weibull or gamma distributions are closer to

reality. Furthermore, correlations between calls with respect to

short- and long-range dependencies have been examined. The

call holding times show no correlation whereas interarrival

times showed dependencies (cf. [10]). Nevertheless, the studies

still imply a two state model as presented in figure 1 with

different (non-exponential) state holding time distributions.

Studies of the 1980s consider the traffic of a single channel

(talk group) whereas newer studies consider the traffic of the

complete trunked radio systems (multiple talk groups mixed).

However, the lack of examining single channels results in less

accuracy when modelling the traffic of one talk group. In [12]

new traffic models are proposed that model single talk group

push to talk traffic in disaster areas and consider conversational

dependencies. These traffic models are described in detail in

the following section.

III. TRAFFIC MODELS

In this section we give a short description of our earlier

work. In [12] voice traces from a large catastrophe manoeuvre

were analysed. The time series were examined with respect to

dependencies and heavy load periods. Examining dependen-

cies of the call idle times due to conversational dependencies,

a n-state (semi-)markov model was provided (see figure 2). A

brief description is given in the following.

After a conversation idle time Conv IDLE a new con-

versation starts with at least one call with channel holding

time Call CHT . After this call there may be either a short

idle time Call IDLE (with probability p1) or a longer one

Conv IDLE (with probability q1 = 1−p1). In case of a long

Fig. 2. n-state (On-/Off-Model) (semi-) markov model

idle time we return to the first state (Conv IDLE). In case of

a short idle time, the conversation contains another call with

channel holding time Call CHT . After this again there may

be either a short idle time Call IDLE (with probability p2)

or a longer one Conv IDLE (with probability q2) and so on

(with probabilities pk and qk, respectively).

The transition probabilities pk and qk were determined from

the measured conversations calculating conditional probabili-

ties as follows:

COLk :=

{

∅ k ≤ 0
{Conversations : CallCount ≥ k} k ≥ 1

COEk :=

{

∅ k ≤ 0
{Conversations : CallCount = k} k ≥ 1

qk := P{CallCount = k | CallCount ≥ k} =
| COEk |

| COLk |

pk := 1 − qk

The probability for a conversation containing at least k calls

is the product of the probabilities p1, .., pk−1, whereas exactly

k calls is the product of the probabilities p1, .., pk−1, qk.

Different state holding time distributions were obtained for

call holding times, call idle times, and conversation idle times

by fitting the distributions to the traces. For the call holding

times and conversation idle time the best fit was achieved by a

lognormal distribution. For the call idle times the best fit was

achieved by the gamma distribution.

Furthermore, the load of a channel was varying and heavy

load periods were determined. The conversation idle times

were found to be the characteristic parameter of the heavy load

periods. Intuitively it is quite obvious: heavier load implies

more conversations which implies smaller conversation idle

times. Thus, heavy load periods should be considered when

fitting the distribution for the conversation idle times.

As the channel holding and call idle times are modelled

identically for all calls due to similar distributions, a simpler

3-state model (see figure 3) was provided. After a call with

call holding time Call CHT (state in the middle) there may

be either a short idle time or a longer one. The difference to

the n-state model is that the count of short calls in a row is

not modelled explicitly due to a memoryless property of this

model. The probabilities pk and qk do not change for different

k. After k short idle times it is as probable that a long one

follows as it is after the first short idle time. In theory there is

no maximum number of calls per conversation in the 3-state

model in contrast to the n-state one. However, the probability

for a larger number of calls per conversation is arbitrary small.

Fig. 3. 3-state (semi-)markov model
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Fig. 4. Number of calls over throwaway times

In visual, statistical and simulative evaluations both models

resulted in realistic synthetic traffic for DA scenarios. In this

paper, we address the question whether these models are

also applicable for modelling (non-catastrophe) load on FR

communication systems.

IV. MEASUREMENT ARCHITECTURE

To obtain realistic time series of a public safety wireless

communication system we performed traffic measurement on

the analog German national radio system, called BOS-system

(68-87.5 MHz and 146-174 MHz). We measured the main

FR channel (85.915 MHz) of the FR district of Bonn. The

district contains an area of more than 140 km2 and more

than 310,000 residents. The channel is dispatched by the fire

department of Bonn. The channel is used by about twelve

ambulances and three fire brigades in parallel on average. Of

course, during larger planned events (e.g. concerts or sport

events) or catastrophes the number of users rises. In the

BOS-system different talk groups are separated by different

physical channels. Thus, all users of the district build one talk-

group. We measured for more than six months (02.06.2006 to

06.12.2006).

Our goal was to determine On- and Off-times for the

channel. Based on short term fourier transformation (stft) we

filtered out the relevant frequencies for human speech (100Hz

- 7kHz) and summed up the intensities. When the sum was

above a threshold, the channel was considered as being used

(On-Time). We chose parameters such that a granularity of the

resulting On- and Off-times of 10ms was achieved. A smaller

value does not provide any benefit, because voice coders

like G.729 [13] or the enhanced Mixed Excitation Linear

Prediction (MELPe) [14] (for tactical environments) split the

audio signal into frames of 10ms or 22.5ms, respectively. Thus,

assuming such a vocoder to be used in a future digital system,

more accurate On- and Off-Times have no impact on the traffic

modelled.

After this analysis there are still a lot of small false calls,

that only comprise spurious noise. These false calls need to

[0:1) [2:3) [4:5) [6:7) [8:9) [10:11) [13:14) [16:17) [19:20)

0

20

40

60

80

100

idle time interval in [s]

b
o

x
p

lo
t 

o
f 

n
e

x
t 

s
a

m
p

le
s
 d

is
tr

ib
u

ti
o

n
 i
n

 [
s
]

Fig. 5. Dependencies idle times - box plots for intervals over time

be discarded. As threshold value a throwaway time had to be

found to discard calls smaller than it (cf. [1]). In our previous

work [12] we performed a two stage method which yielded a

value of 300ms. However, figure 4 shows the number of calls

over throwaway times up to 5s. There is a significant decrease

around 1s. The reason for this are digital messages that are

sent to reduce usage times for standard messages. Up to four

short messages each 48bits long are send using frequency shift

keying. Sending one block of four messages takes up to 1s

to be transmitted (for further information see [15]). As these

messages are no voice messages they need to be filtered out.

After an empirical verification of the content of calls smaller

1s, we decided to set the throwaway time to 1s.

Finally, we base our analysis in the following section on

115,100 calls. We calculate idle and channel holding times

and obtain the time series.

V. ANALYSIS OF TIME SERIES

In this section we analyse the time series of the FR traffic

obtained with respect to short-range dependencies, variation of

load and long-range dependencies. Furthermore, we look for

similarities of the FR time series to DA ones and also point

out the differences.

A. Short Range Dependencies

For FR traffic we expect short range dependencies similar

to the DA ones due to the conversational manner of the

communication. If the communication follows a conversational

manner there are many short idle times that are followed by

a short one (calls in one conversation), short idle times that

are followed by a long one (last call of the conversation), and

long idle times that are followed by a short one (first call of

the conversation). But long idle times followed by long ones

are rare (single call conversations).

Figure 5 shows a box plot for the idle time series obtained

in the previous section. The samples x1, x2, .., xn are regarded

as points (xi, xi+1) for i = 1, 2, .., n − 1. The data of the x-

axis xi’s are pooled in intervals (of 1s in figure 5). The y-axis
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Fig. 6. Traffic intensity over time

shows box plots for the intervals. The box plot shows median,

quartiles, octiles, and extremes (for further details see [16]).

The figure shows that both the boxes and the medians for the

first intervals are much smaller when compared to later ones.

Thus, many short idle times are followed by short ones which

confirms our expectation of short range dependencies due to

conversational manner of the communication.

To allow for an analysis of conversations, these conversation

have to be identified in the trace files. In principle there

are three possible approaches: speaker recognition, manual

analysis, and time threshold based approach (cf. [12]). As

speaker recognition is too complex and error-prone for noisy

channels like ours and manual analysis is not possible for

such a long trace, we decided to use the time threshold based

approach. A new conversation is assumed to have started when

the idle time is larger than a certain threshold.

Inaccuracies may occur if the idle time in between two

conversations is smaller than the threshold. In this case two

conversation are regarded as one. However, this may especially

be the case under heavy load. Even in this situations a kind of

human backoff can be experienced before a new conversation

is started in case the users are not to stressed up. The load

on an FR channels (as we will see in section V-D) is lower

than in catastrophe scenarios. Furthermore, the users of the FR

channels are more professional and are less stressed than the

ones in catastrophe situations. Thus, there are not too many

inaccuracies to be expected.

As threshold value we decided to use 3s, as it turned out to

be a good choice during the analysis of DA traces in [12]. By

grouping calls to conversations the following four time series

result:

call channel holding time: time one call lasts

call idle time: time between two calls of a

conversation

conversation idle time: time between two conversations

calls per conversation: number of calls per conversation
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Fig. 7. Correlation of traffic intensity and idle fraction

B. Variation of load

Emergencies do not happen one after another with constant

pause time in between. They also differ from one to another.

Thus, the number of conversation is variable. Furthermore, as

mentioned above, during larger events (e.g. concerts or sport

events) or catastrophes the number of users and within this

the number and frequency of conversation arises. Thus, there

is a variation of load on the channel observed.

As metric to examine the load, the traffic intensity may be

used:

TI[i;i+t) =
time medium allocated[i;i+t)

time[i;i+t]

It can be calculated for different interval sizes t. Figure

6 shows the traffic intensity over the time of four weeks

(2,419,200s) for an interval size of t = 1h. It can be seen

that there is some variation. It is interesting that differences

between day and night can be seen. As during night many

people sleep the number of emergencies is smaller (cf. the

extension in fig. 6). Thus, the number of missions and with

it the traffic intensity on the communication channel is lower

during the night. Nevertheless, the overall traffic intensity is

quite small compared to the DA channels (cf. [12]).

The time series that has the main influence on the traffic

intensity is supposed to be the conversation idle time. To

confirm this, we calculated the idle-fraction over time for the

same month:

IF[i;i+t) =

∑

Conversation idle times[i;i+t)

time[i;i+t]

As visualising the idle fraction is more or less an inverse

of figure 6, we prefer to show a correlation plot of traffic

intensity to idle fraction. Figure 7 shows a strong negative

correlation. Calculating a correlation coefficient results in -

0.9992194. This implies that the conversation idle times are

the ones that excite the variation of load. Furthermore, it shows

that the conversation idle time (distribution) is the one to
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modify when wanting to change the load of the generated

traffic.

C. Long-range dependencies

In [10] signs for long-range dependence of interarrival times

are observed in traces of trunked radio systems containing

multiple talk groups aggregated. Long-range dependence intu-

itively means correlation between distant events in time. Self-

similarity usually implies long-range dependence.

A stochastic process X = {X(t)}t∈R is called self-similar,

if:

∀a > 0 : {X(at)}t∈R ≡ {aHZ(t)}t∈R

where ≡ denotes the equality of the finite-dimensional distri-

butions (cf. [17]). The Hurst parameter H (0.5 ≤ H ≤ 1)

is a measure for the degree of self-similarity. The larger H

the larger the indication for self-similarity. Intuitively, self-

similarity means that certain properties do not depend on the

scaling in space or time (cf. e.g. [18]). Aggregating multiple

on-off streams asymptotically can result in self-similar traffic

(cf. [19]). However, the question remains whether there is also

long-range dependence between the conversations of one talk

group.

To study self-similarity, we estimate the Hurst parameter H .

There are different analytical methods to estimate H . We use

three different methods to estimate H:

1) The Variance-Time plot method relies on the slowly

decaying variance of self-similar time series with rising

aggregation level.

2) The rescaled range (R/S) plot method is based on the

fact that self-similar datasets show a rescaled range or

R/S statistics growing according to the power-law with

exponent H .

3) The periodogram method estimates H by the slope of

the frequency spectrum as frequency approaches zero.

Further details can be found e.g. in [19]. Figure 8 visualises

these estimations. All estimated values for H are significantly

larger than 1
2 and thus indicate self-similarity. A reason for

this may be high variability caused by bursts of conversations.

The amount and size of emergencies is varying over the time.

Within this, the amount of active users and the amount of con-

versations varies as well. Thus, the long range dependencies

of the conversation idle times are probably caused by the high

variability of the emergencies.

Note, that estimating long range dependencies as well as

self-similarity is complicated and non-stationary and periodic

time series may produce falsified results (cf. e.g. [20], [21]).

We examined periodicity by calculating a spectrum using

fourier transformation; but there were no significant signs of

periodicity. Concerning stationarity the conversation idle times

seem to contain non-stationary effects at different time-scales.

Unfortunately, the sample size is not large enough to let us

calculate Hurst parameters for disjoint intervals as e.g. done

in [18] for Internet traffic.

However, concerning simulations it makes only sense to

consider long-range dependence, if a simulation run lasts long
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Fig. 8. Estimations of Hurst parameter for FR time series

enough. Otherwise, the long range dependent effects would

not have a significant impact. Typical simulation times for

network simulation are significantly smaller than 60 minutes

(3600s). Thus, complex models would not have an impact on

the simulation. Therefore, we do not consider long-range de-

pendence in the following section. Nevertheless, we consider

long-range dependence as one important aspect and want to

examine it in detail in the future.
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Fig. 9. Comparison of distributions of FR and DA time series via cumulative
distribution functions

D. First Responder vs. Disaster Area traffic

In section V-A we showed that the FR time series show

dependencies similar to DA time series. Thus, the approach

using (semi-)markov models described in section III may be

sufficient to model the traffic in FR networks. As a further step,

it is interesting to compare the distribution of FR and DA time

series. In the following, we study whether the distributions of

FR and DA times series may be configured with the same or

with different parameters.

Figure 9 shows cumulative distribution functions for the

different time series for FR as well as DA. For DA the time

series of [12] are used for reference purposes. The channel

holding time of the calls (figure 9(a)) for the FR is a little

larger when compared to the DA ones. The reason for this

is that the users in catastrophe situations are more stressed

up. Furthermore, in FR networks detailed information (e.g.

addresses) is given more often. Moreover, in DA networks it

is impossible to send standard messages using frequency shift

keying. Thus, even for short standard information voice calls

have to be used. The call idle times (figure 9(b)) show a perfect

similar distribution. Thus, similar parameters can be used for

FR and DA distributions.

Figure 9(c) shows significant differences of conversation

idle times between FR and DA distributions. The load in

catastrophe situation is higher than in FR networks. This fits

to the results observed in section V-B compared to the ones in

[12]. The average traffic intensity of the FR channel is smaller

than that of the DA channels.

The average count of calls per conversation (figure 9(d))

i pi qi

1 0.467798321212914 0.532201678787086

2 0.596171522199576 0.403828477800424

3 0.568910041560531 0.431089958439469

4 0.564039118652056 0.435960881347944

5 0.580948401921872 0.419051598078128

6 0.611650485436893 0.388349514563107

7 0.617871840094062 0.382128159905938

8 0.673644148430067 0.326355851569933

9 0.672316384180791 0.327683615819209

10 0.728991596638656 0.271008403361345

11 0.723342939481268 0.276657060518732

12 0.705179282868526 0.294820717131474

13 0.706214689265537 0.293785310734463

14 0.832 0.168

15 0.836538461538462 0.163461538461538

mean 0.888192502517706 0.111807497482294

mean(1:10) 0.608234186032742 0.391765813967258

TABLE II
PROBABILITIES FOR N-STATE MODEL

differs slightly with two compared to one call per conversation.

The conversations on the FR channel are shorter. A reason for

this may be that the users are more professional and used to

work together. Thus, they need less calls to exchange the same

information.

In general, there are significant differences for all distribu-

tions other than for the call idle times. However, the impact of

the conversation idle time is by far the largest. The differences

of the other distributions may only have little impact on the

modelled traffic. Nevertheless, we will search for optimal

distributions and parameter sets for all time series.

VI. FITTING TO MODELS

As argued above, the 3-state and n-state-model may be used

as they realise conversational dependencies. In this section

we estimate optimal parameters for the 3-state and n-state-

model. Furthermore, we also fit the standard 2-state model

even if it does not realise conversational dependencies, as we

will use it in the following section for reference purposes.

For estimating optimal parameters we use the Maximum-

Likelihood-Method. Having found the optimal parameters, the

quality of the fitting to the empirical data was evaluated using

the Kolmogorov-Smirnov (K-S) test. We performed tests with

four different distributions. The exponential distribution is the

standard distribution used in the past (cf. section II). Recent

studies show better fittings for lognormal, weibull and gamma

distributions.

Table I shows the results for the different time series

obtained in the previous section. The first column shows the

fittings for the call channel holding time that is used for all

models. The second and third column show idle time fittings

separated for calls and conversations for the n-state and 3-

state model. The right column shows the (mixed) idle times

as needed for the two state model. The best fittings for all

time series except the conversation idle time were achieved

by the lognormal distribution. For the conversation idle times

the weibull distribution achieves a slightly better fit than the

lognormal distribution. However, both fittings achieve a very
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Distribution Call CHT Conv. idle time Call idle time Call and Conv. idle time

Parameters K-S dist. Parameters K-S dist. Parameters K-S dist. Parameters K-S dist.

exponential rate = 0.3122918 0.27 rate = 0.007625337 0.2985 rate = 1.030362 0.1069 rate = 0.01191654 0.5729

lognormal meanlog = 0.8997390 0.0971 meanlog = 3.139367 0.0603 meanlog = -0.3481742 0.0444 meanlog = 1.434116 0.1043

sdlog = 0.6872737 sdlog = 2.225036 sdlog = 0.8482944 sdlog = 2.272971

weibull shape = 1.329617 0.1724 shape = 0.5215525 0.0386 shape = 1.363882 0.0539 shape = 0.4146688 0.1339

scale = 3.524368 scale = 66.7706266 scale = 1.064338 scale = 13.8497172

gamma shape = 2.0443904 0.1279 shape = 0.386194137 0.0685 shape = 1.718836 0.0461 shape = 0.241572882 0.2221

rate = 0.6384465 rate = 0.002948838 rate = 1.771023 rate = 0.002905988

TABLE I
FITTING OF DIFFERENT DISTRIBUTIONS TO TIME SERIES

small K-S distance. As the lognormal distribution showed bet-

ter fittings for the conversation idle time in our previous work

and the weibull distribution (with the parameters obtained)

tends to produce slightly lower load due to larger idle times,

we decided to prefer the lognormal distribution.

Please note, that due to the threshold based approach used

for grouping calls to conversation, values smaller than three

seconds do not exist. Therefore, we shifted the values by three

seconds and fitted the distributions. Random variates produced

by these distributions have to be reshifted (plus 3 seconds).

Finally, we decided to use the lognormal distributions with

parameters as shown in table I for all models and time series

in the following section.

Furthermore, we calculated the transition probabilities for

the n-state model as described in section III (see results in

table II). For the 3-state model we use the mean value over the

first ten probabilities as means over more values are falsified

by single outliers.

VII. EVALUATION

In this section we provide visual and statistical evidence

of the appropriateness of the models. The goal is to show

differences between the models and compare the models to

the original trace. For the evaluation we used the state holding

time distributions and transition probabilities as described in

the previous section. We generated one large trace of four

weeks (2,419,200s = 28days) for each model and compare it

to four weeks of the original trace.

Figure 10 shows 100 samples of idle times of each time

series. The y-axis is limited to 6s to show details inside

the conversations. Values larger than 3s are regarded as a

new conversation. Figure 10(a) for the 2-state model looks

denser than the trace in figure 10(d). Longer conversation

with larger numbers of calls are seldom. The 3-state model

(figure 10(b)) shows slightly better visual results. The size of

the conversation visually fits to the trace. The n-state model

(figure 10(c)) shows the largest conversations. Compared to

the trace the conversations seem to contain too many calls.

After a first visual impression, we examined the count of

calls per conversation. Table III shows the average count of

calls and 95% confidence intervals over all conversation of the

whole time series (28days). The number of calls per conversa-

tion produced by the 2-state model is significantly smaller; the

mode does not consider conversational dependencies observed

in section V-A. In contrast to this, the 3-state as well as the

Model average 0.95 conf. int.

2 state model 1.793815 0.014903

3 state model 2.525616 0.036259

n state model 2.127673 0.034291

trace 2.151705 0.016614

TABLE III
COUNT OF CALLS PER CONVERSATION

n-state model gain to model the dependencies. The amount of

call per conversation is quite similar to the trace. However, the

3-state model tends to produce slightly longer conversations

compared to the trace.

Finally, we wanted to perform further statistical evaluation

based on traffic intensities. Therefore, we calculated traffic

intensities for intervals of t = {60s; 900s = 15min; 3, 600s =
1h; 21, 600 = 6h} for the different traces. Table IV shows

mean and coefficient of variation of the traffic intensities for

the different models and time intervals. The table shows that

even if the mean of the 2-state model is the closest to the trace,

the variations over time are not modelled sufficiently. The 3-

state model achieves better results. The n-state model tends

to model larger average traffic intensity and larger variation.

However, the 3-state and n-state model can be regarded as

lower and upper bounds for the trace.

The 3-state and n-state show benefit modelling FR traffic

as they reflect the conversational dependencies. These have

significant impact on the performance evaluation concerning

delay and packet loss (cf. [12]). In network simulation of ad-

hoc and mesh networks normally simulation times smaller

than one hour (3600s) are used. Thus, more complex models

would not have a significant impact on the results of these

simulations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have analysed traffic that was measured

over six months in a FR network. Based on this traffic, we

calculated time series for single talk group push to talk traffic.

The time series were analysed with respect to short-range and

long-range dependencies as well as variation of load over the

time. Furthermore, we have pointed out differences to traffic

measured in a disaster area scenario. As the characteristics

are similar, we adapted two models developed for disaster

area traffic. We fitted standard distributions to the different

models using the samples of our measurements. Lognormal

distributions provided the best fit for all distributions.
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Model t = 60s = 1min t = 900s = 15min = 1/4h t = 3600s = 1h t = 21600s = 6h
mean coeffi. of var. mean coeffi. of var. mean coeffi. of var. mean coeffi. of var.

2 state model 0.05260401 0.2130546 0.05258575 0.05238997 0.05252715 0.02381036 0.05213978 0.009148676

3 state model 0.03169022 0.2725159 0.03168634 0.05990502 0.03168634 0.02563872 0.03150104 0.007801865

n state model 0.07487302 0.4595133 0.07487117 0.1722872 0.07487117 0.08771904 0.07431902 0.03500988

trace 0.05532976 0.2874941 0.05535319 0.08588609 0.05535319 0.05147096 0.05535319 0.01798584

TABLE IV
STATISTICS FOR TRAFFIC INTENSITY OVER DIFFERENT INTERVALS
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Fig. 10. Idle Times (100 samples of each time series)

Finally, we generated traffic streams for the different mod-

els. These streams were evaluated visually and statistically.

The 2-state models shows larger differences to the measured

data than 3-state and n-state models because the conversational

correlations observed are not considered. Neither the 3-state

nor the n-state model consider long-range dependence or

differences between days and nights. Nevertheless, the models

should be used for simulative network performance analysis

of voice communications in FR networks as they consider

conversational correlations sufficiently.

In the future, we want to investigate the aspects of long

range dependencies in detail. Besides this, we plan to perform

further measurements to analyse push to talk voice traffic in

other scenarios (e.g. taxis, busses). Furthermore, we plan to

examine functional relations between the parameters for the

conversation idle time distribution and traffic intensity. Our

goal is to adjust the traffic intensity of a scenario by adjusting

the conversation idle time distribution. Additionally, we want

to carry out a simulative performance analysis in ad-hoc and

mesh networks e.g. of routing protocols.
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